Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
ChemMedChem ; 16(15): 2345-2353, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1248684

ABSTRACT

The C-type lectin receptor DC-SIGN mediates interactions with envelope glycoproteins of many viruses such as SARS-CoV-2, ebola, and HIV and contributes to virus internalization and dissemination. In the context of the recent SARS-CoV-2 pandemic, involvement of DC-SIGN has been linked to severe cases of COVID-19. Inhibition of the interaction between DC-SIGN and viral glycoproteins has the potential to generate broad spectrum antiviral agents. Here, we demonstrate that mannose-functionalized poly-l-lysine glycoconjugates efficiently inhibit the attachment of viral glycoproteins to DC-SIGN-presenting cells with picomolar affinity. Treatment of these cells leads to prolonged receptor internalization and inhibition of virus binding for up to 6 h. Furthermore, the polymers are fully bio-compatible and readily cleared by target cells. The thermodynamic analysis of the multivalent interactions reveals enhanced enthalpy-driven affinities and promising perspectives for the future development of multivalent therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Cell Adhesion Molecules/antagonists & inhibitors , Glycoconjugates/pharmacology , Lectins, C-Type/antagonists & inhibitors , Receptors, Cell Surface/antagonists & inhibitors , Virus Attachment/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Cell Adhesion Molecules/metabolism , Glycoconjugates/chemical synthesis , Glycoconjugates/metabolism , Humans , Lectins, C-Type/metabolism , Mannose/analogs & derivatives , Mannose/metabolism , Mannose/pharmacology , Microbial Sensitivity Tests , Polylysine/analogs & derivatives , Polylysine/metabolism , Polylysine/pharmacology , Protein Binding/drug effects , Receptors, Cell Surface/metabolism , SARS-CoV-2/drug effects , THP-1 Cells , Thermodynamics , Viral Envelope Proteins/antagonists & inhibitors , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL